Меню Рубрики

Аутосомный ген альбинизма решение задач

Задача 1
Известно, что «трехшерстные» кошки — всегда самки. Это обусловлено тем, что гены черного и рыжего цвета шерсти аллельны и находятся в Х – хромосоме. Ни один из них не доминирует, а при сочетании рыжего и черного цвета формируются «трехшерстные» особи.
1. Какова вероятность получения в потомстве «трехшерстных» котят от скрещивания «трехшерстной» кошки с черным котом?
2. Какое потомство можно ожидать от скрещивания черного кота с рыжей кошкой?
Решение:
Интересное сочетание: гены черного и рыжего цвета не доминируют друг над другом, а в сочетании дают «трехшерстную» масть. Здесь наблюдается кодоминирование (взаимодействие генов). Возьмем: А – ген отвечающий за черный цвет, В – ген отвечающий за рыжий цвет; гены А и В равнозначны и аллельны ( А=В ), но эти гены находятся в Х – хромосоме. Поэтому мы обозначаем ген черного цвета Х A , ген рыжего цвета – Х В .

По условия пункта 1 скрещиваются трехшерстная кошка с черным котом.

По условиям пункта 2 скрещиваются рыжая кошка с черным котом:

При решении задачи использовали закон чистоты гамет и сцепленное с полом наследование. Взаимодействие генов: кодоминирование. Вид скрещивания: моногибридное.

Задача 2
Классическая гемофилия передается как рецессивный сцепленный с Х – хромосомой признак.
1. Мужчина, больной гемофилией, жениться на женщине, не имеющей этого заболевания. У них рождаются нормальные дочери и сыновья, которые все вступают в брак с не страдающими гемофилией лицами. Обнаружится ли у внуков вновь гемофилия, и какова вероятность появления больных в семье дочери или сына?
2. Мужчина, больной гемофилией, вступает в брак с нормальной женщиной, отец которой страдал гемофилией.
Определите вероятность рождения в этой семье здоровых детей.
Решение:

По условиям пункта 1 ясен генотип больного мужчины: Х h . Так как женщина не страдает гемофилией, у нее обязательно должен быть доминантный ген «нормы» — Х H . Второй ген женщины также доминантный (Х H ), в генотип женщины Х H Х H . Генотипы детей от такого брака:

Иначе говоря, все мальчики будут здоровы, гена гемофилии у них не будет, а все девочки будут гетерозиготными – в рецессиве у них будет ген гемофилии.
Если все мальчики в последствии вступят в брак со здоровыми в отношении гемофилии лицами (Х H Х H ), гемофилия у внуков не проявится. Если дочери (Х H Х h ) вступят в брак со здоровыми мужчинами (Х H Y), вероятность проявления гемофилии у внуков будет равна1/4, или 25%. По полу это будут мальчики:

По условиям пункта 2 в брак вступает больной мужчина (генотип X h Y) с женщиной, не страдающей болезнью. Следовательно, у женщины один ген обязательно «норма» – Х H . Но второй ген из этой пары у нее должен быть геном гемофилии – Х h , так как отец этой женщины страдал гемофилией, а женщина получает всегда одну Х – хромосому от матери, а вторую – от отца. Генотип женщины – Х H Х h . Вероятность рождения здоровых детей в этой семье равна 1/2. Девочки с генотипом Х h Х h погибают.

Задача 3
У человека классическая гемофилия наследуется как сцепленный с Х – хромосомой рецессивный признак. Альбинизм (отсутствие пигментации) обусловлен аутосомным рецессивным геном. У одной супружеской пары, родился сын с обеими аномалиями. Какова вероятность того, что у второго сына в этой семье проявится также обе аномалии одновременно?
Решение:

По условиям задачи оба родителя нормальны, следовательно, у них обязательно есть по доминантному гену из каждой пары Х H и А. Сын имеет обе аномалии, его генотип Х h Yаа. Х – хромосому с геном гемофилии он мог унаследовать только от матери. Один из генов альбинизма сын получил от матери, другой — от отца. Таким образом, генотип матери Х H Х h Аа, генотип отца Х H YАа. При таком браке вероятны генотипы детей:

Вероятность того, что следующий ребенок будет сыном, равна 1/2. Из числа сыновей лишь 1/8 может иметь одновременно обе аномалии. Для вычисления окончательного результата вероятности перемножаются: 1/2 х 1/8=1/16.

Задача 4
Гипертрихоз (вырастание волос на краю ушной раковины) передается через Y – хромосому, а полидактилия (шестипалость) – как доминантный аутосомный ген. В семье, где отец имел гипертрихоз, а мать – полидактилию, родилась нормальная в отношении обоих признаков дочь. Какова вероятность того, что следующий ребенок в этой семье будет также без обеих аномалий?
Решение:
В условиях задачи ген гипертрихоза обозначим звездочкой (*), находящейся в Y*– хромосоме, в Х – хромосоме нет гена аллельного гену гипертрихозу:

Так как отец имел гипертрихоз и был пятипалым, его генотип XY*aa. У матери не было гипертрихоза (и не могло быть, так как у нее нет Y — хромосомы), но она была шестипалой. Следовательно, у нее должен быть хотя бы один ген шестипалости – А. В этой семье родилась нормальная девочка. Ее генотип ХXаа. Один ген пятипалости она получила от отца, а второй ген пятипалости могла получить только от матери. На основе этого решаем, что мать была гетерозиготна по гену шестипалости. Ее генотип ХХАа. Вероятны генотипы детей:

Без обоих аномалий возможна лишь 1/4 детей, или 25%.

Задача 5
У человека отсутствие потовых желез проявляется как сцепленный с полом рецессивный признак. Глухота, то есть отсутствие слуха, обусловлено аутосомным рецессивным геном. У супружеской пары, нормальной по этим признакам, родился сын с обоими аномалиями. Определите возможные генотип родителей и вероятность рождения ребенка с таким же генотипом как первый. Дать цитологическое обоснование.
Решение:

ак как оба родителя были здоровы, значит ген отсутствия потовых желез является рецессивным и находиться в Х – хромосоме у женщины, т.к. она имеет две Х – хромосомы (в одной Х – хромосоме доминантный ген нормы, а в другой Х – хромосоме – рецессивный ген. Оба родителя гетерозиготы по гену глухоты, потому что у них родился больной сын

Вероятность рождения в этой семье больного ребенка с обоими аномалиями (ааХ b Y) — 1/16 или 0,0625%.

Цитологическое обоснование.
(Гены находятся в хромосомах: — Х-хромосома с генами, — У)

Взаимодействие генов: полное доминирование. Законы генетики, которые использовали при решении задачи: чистоты гамет, сцепленное с полом наследование, закон независимого наследования признаков.

Задача 6
У дрозофилы гены определяющие окраску глаз, локализованы в Х – хромосоме. Доминантный аллель W детерминирует красную окраску глаз, его рецессивный аллель w – белую. Скрещивали гомозиготную красноглазую самку с белоглазым самцом. В F1 получили 48 потомков. От скрещивания их между собой получено 192 мухи в потомстве F2.
Определите:
1. Сколько женских особей было в F1?
2. Сколько самцов в F1 имело красную окраску глаз?
3. Сколько самок F1было красноглазых?
4. Сколько самцов в F2 было белоглазых?
5. Составить схему скрещивания.
Решение:
Х W – ген определяющий красные глаза
Х w – ген определяющий белые глаза

1). Скрещивание гомозиготной красноглазой самки с белоглазым самцом:

Соотношение особей в потомстве 1:1. По фенотипу все особи красноглазые.
Поэтому:
1. Женских особей в F1 было 48:2=24особи.
2. В F1 все самцы (24особи) имели красные глаза.
3. Все самки в F1 были красноглазыми (24 особи).

2). Скрещивание между собой гибридов F1:

Соотношение особей в потомстве 1:1:1:1
Поэтому: в F2 белоглазых самцов было (192:4; х2 = 96 особей).
Взаимодействие генов: полное доминирование. Законы генетики: закон чистоты гамет и сцепленное с полом наследование.

Задача 7
Селекционеры в некоторых случаях могут определить пол только что вылупившихся цыплят.
При каких генотипах родительских форм, возможно это сделать, если известно, что гены золотистого (коричневого) и серебристого (белого) оперения расположены в Х – хромосоме и ген золотистого оперения рецессивен по отношению к серебристому? Не забудьте, что у кур гетерогенным полом является женский!
Решение:
А – ген серебристого окрашивания
а – ген золотистого окрашивания

При скрещивании серебристой курочки с золотистым петушком курочки будут все золотистые, а петушки серебристые. Таким образом, петушки с серебристой окраской оперения будут иметь генотип Х A Х a , а курочки с золотистой окраской оперения — Х A Y.

Задача 8
Гипертрихоз наследуется как сцепленный с У – хромосомой признак, который проявляется лишь к 17 годам жизни. Одна из форм ретинита (ночная слепота) наследуется как рецессивный, сцепленный с Х – хромосомой признак. В семье, где женщина по обоим признакам здорова, а муж является обладателем только гипертрихоза, родился мальчик с ретинитом. Определить вероятность проявления у этого мальчика гипертрихоза. Определить вероятность рождения в этой семье детей без обоих аномалий и какого, они будут пола.
Решение:
X A – ген нормального ночного зрения;
Х a –ген ночной cлепоты;
Y* — ген гипертрихоза;
Y – ген нормы

Соотношение особей в потомстве 1:1:1:1
Вероятность проявления у первого сына гипертрихоза – 100%. Вероятность рождения здоровых детей – 50% (они будут только девочки).

Задача 9
У человека есть несколько форм стойкого рахита. Одна из его форм наследуется доминантно сцеплено с полом, вторая рецессивно – аутосомная. Какова вероятность рождения больных детей, если мать гетерозиготная по обоим формам рахита, а отец здоровый все его родственники здоровы?
Решение:
Х А – рахит (первая форма);
Х a – норма;
В – норма;
b – рахит (вторая форма).
Из условия задачи видно, что генотип женщины X А X a Bb, а мужчины — X a YBB – он гомозиготен по второй паре генов, т.к. все его родственники здоровы.

Вероятность больных детей 4/8 или 50%. Взаимодействие генов: полное доминирование. Законы генетики, которые использовали при решении задач: закон чистоты гамет, сцепленное с полом наследование, закон независимого комбинирования признаков.

Задача 10
У некоторых пород кур гены, определяющие белый цвет и полосатую окраску оперения, сцеплены с Х – хромосомой, полосатость доминирует над белой сплошной окраской. Гетерогаметный пол у кур женский. На птицеферме белых кур скрестили с полосатыми петухами и получили полосатое оперение как у петушков, так и у кур. Затем скрестили особи, полученных от первого скрещивания, между собой и получили 594 полосатых петушка и 607 полосатых и белых курочек. Определите генотипы родителей и потомков первого и второго поколения.
Решение:
Х А – полосатые;
Х a – белые
У кур гетерогаметный пол, у петухов гомогаметный. Если в F1 все потомки независимо от пола полосатые, то петух гомозиготен и полосатость – доминантный признак. Во втором поколении наблюдается расщепление признака, поэтому петушок в F2 будет гетерозиготен.
a)

источник

Моногибридное скрещивание

№1. Один ребёнок в семье родился здоровым, а второй имел тяжёлую наследственную болезнь и умер сразу после рождения.

Какова вероятность того, что следующий ребёнок в этой семье будет здоровым? Рассматривается одна пара аутосомных генов.

Решение. Анализируем генотипы родителей: оба родителя здоровы, они не могут иметь данную наследственную болезнь, т.к. она приводит к гибели организма сразу после рождения.

Если предположить, что данное заболевание проявляется по доминантному типу и здоровый признак является рецессивным, тогда оба родителя рецессивны. Тогда у них не может родиться больной ребёнок, что противоречит условию задачи.

Если данная болезнь является рецессивной, а ген здорового признака наследуется по доминантному типу, тогда оба родителя должны быть гетерозиготными и у них могут быть как здоровые дети, так и больные. Составляем схему скрещивания:

Ответ: Соотношение в потомстве 3:1, вероятность рождения здорового ребёнка в этой семье составляет 75%.

№2. Растение высокого роста подвергли опылению с гомозиготным организмом, имеющим нормальный рост стебля. В потомстве было получено 20 растений нормального роста и 10 растений высокого роста.

Какому расщеплению соответствует данное скрещивание – 3:1 или 1:1?

Решение: Гомозиготный организм может быть двух видов: доминантным (АА) или рецессивным (аа). Если предположить, что нормальный рост стебля определяется доминантным геном, тогда всё потомство будет “единообразным”, а это противоречит условию задачи.

Чтобы произошло “расщепление”, растение нормального роста должно иметь рецессивный генотип, а растение высокого роста должно быть гетерозиготным.

Ответ: Соотношение по фенотипу и генотипу в потомстве составляет 1:1.

№3. При скрещивании чёрных кроликов между собой в потомстве получили чёрных и белых крольчат.

Составить схему скрещивания, если известно, что за цвет шерсти отвечает одна пара аутосомных генов.

Решение: Родительские организмы имеют одинаковые фенотипы – чёрный цвет, а в потомстве произошло “расщепление”. Согласно второму закону Г. Менделя, ген, ответственный за развитие чёрного цвета, доминирует и скрещиванию подвергаются гетерозиготные организмы.

№4. У Саши и Паши глаза серые, а у их сестры Маши глаза зелёные. Мать этих детей сероглазая, хотя оба её родителя имели зелёные глаза. Ген, ответственный за цвет глаз расположен в неполовой хромосоме (аутосоме).

Определить генотипы родителей и детей. Составить схему скрещивания.

Решение: По материнскому организму и по её родителям определяем, что серый цвет глаз является рецессивным признаком (второй закон Г. Менделя).

Т.к. в потомстве наблюдается “расщепление”, то отцовский организм должен иметь зелёный цвет глаз и гетерозиготный генотип.

№5. Мать брюнетка; отец блондин, в его родословной брюнетов не было. Родились три ребёнка: две дочери блондинки и сын брюнет.

Ген данного признака расположен в аутосоме.

Проанализировать генотипы потомства и родителей.

Решение: Генотип отцовского организма должен быть гомозиготным, т.к. в его родословной наблюдается чистая линия по цвету волос. Гомозиготный генотип бывает доминантным (АА) или рецессивным (аа).

Если генотип отца гомозиготный доминантный, то в потомстве не будет детей с тёмными волосами – проявится “единообразие”, что противоречит условию задачи. Следовательно, генотип отца рецессивный. Материнский организм должен быть гетерозиготным.

Ответ: Соотношение по фенотипу и генотипу в потомстве составляет 1:1 или 50% 50%.

№6. У человека проявляется заболевание – серповидно-клеточная анемия. Эта болезнь выражается в том, что эритроциты крови имеют не круглую форму, а серповидную, в результате чего транспортируется меньше кислорода.

Серповидно-клеточная анемия наследуется как неполностью доминантный признак, причём гомозиготное состояние гена приводит к гибели организма в детском возрасте.

В семье оба супруга имеют признаки анемии.

Какова процентная вероятность рождения у них здорового ребёнка?

Решение: Составляем схему скрещивания:

Ответ: 25% здоровых детей в данной семье.

Дигибридное скрещивание независимое наследование генов

№1. Мутации генов, вызывающие укорочение конечностей (а) и длинношерстость (в) у овец, передаются в следующее поколение по рецессивному типу. Их доминантные аллели формируют нормальные конечности (А) и короткую шерсть (В). Гены не сцеплены.

В хозяйстве разводились бараны и овцы с доминантными признаками и было получено в потомстве 2336 ягнят. Из них 425 длинношерстых с нормальными конечностями и 143 длинношерстых с короткими конечностями.

Определить количество короткошерстых ягнят и сколько среди них с нормальными конечностями?

Решение. Определяем генотипы родителей по рецессивному потомству. Согласно правилу “чистоты гамет” в потомстве по каждому признаку один ген от отцовского организма, другой ген от материнского организма, следовательно, генотипы родителей дигетерозиготные.

1). Находим количество длинношерстных ягнят: 425 + 143 = 568.
2). Находим количество короткошерстных: 2336 – 568 = 1768.
3). Определяем количество короткошерстных с нормальными конечностями:

№2. У человека ген негритянской окраска кожи (В) полностью доминирует над геном европейской кожи (в), а заболевание серповидно-клеточная анемия проявляется неполностью доминантным геном (A), причём аллельные гены в гомозиготном состоянии (AA) приводят к разрушению эритроцитов, и данный организм становится нежизнеспособным.

Гены обоих признаков расположены в разных хромосомах.

Чистородная негроидная женщина от белого мужчины родила двух мулатов. Один ребёнок не имел признаков анемии, а второй умер от малокровия.

Какова вероятность рождения следующего ребёнка, не имеющего признаков анемии?

Читайте также:  Как вылечить альбинизм

Решение. Составляем схему скрещивания:

Ответ: Вероятность рождения здорового ребёнка в данной семье составляет 1/4 = 25%

№3. Рецессивные гены (а) и (с) определяют проявление таких заболеваний у человека, как глухота и альбинизм. Их доминантные аллели контролируют наследование нормального слуха (А) и синтез пигмента меланина (С).

Родители имеют нормальный слух; мать брюнетка, отец альбинос. Родились три однояйцовых близнеца больные по двум признакам.

Какова вероятность того, что следующий ребёнок в этой семье будет иметь оба заболевания?

По правилу “чистоты гамет” определили, что родители дигетерозиготные:

Ответ: Вероятность рождения ребёнка имеющего оба заболевания составляет 1/8 = 12,5%

№4. Изучаются две пары аутосомных генов, проявляющих независимое наследование.

Петух с розовидным гребнем и оперёнными ногами скрещивается с двумя курицами, имеющих розовидный гребень и оперённые ноги.

От первой курицы были получены цыплята с оперёнными ногами, из них часть имела розовидный гребень, а другая часть – простой гребень.

Цыплята от второй курицы имели розовидный гребень, и часть из них с оперёнными ногами и часть с неоперёнными.

Определить генотипы петуха и двух куриц.

По условию задачи оба родителя имеют одинаковые фенотипы, а в потомстве от двух скрещиваний произошло расщепление по каждому признаку. Согласно закону Г.Менделя, только гетерозиготные организмы могут дать “расщепление” в потомстве. Составляем две схемы скрещивания.

Взаимодействие неаллельных генов

№1. Изучаются две пары неаллельных несцепленных генов определяющих окраску меха у горностая.

Доминантный ген одной пары (А) определяет чёрный цвет, а его рецессивный аллель (а) – голубую окраску.

Доминантный ген другой пары (В) способствует проявлению пигментации организма, его рецессивный аллель (в) не синтезирует пигмент.

При скрещивании чёрных особей между собой в потомстве оказались особи с голубой окраской меха, чёрные и альбиносы.

Проанализировать генотипы родителей и теоретическое соотношение в потомстве.

Ответ: 9 чёрных, 3 альбиноса, 4 голубой окраски.

№2. Наследование окраски оперения у кур определяется двумя парами неаллельных несцепленных генов, расположенных в аутосоме.

Доминантный ген одной пары (А) определяет синтез пигмента меланина, что обеспечивает наличие окраски. Рецессивный ген (а) не приводит к синтезу пигмента и куры оказываются белыми (перьевой альбинизм).

Доминантный ген другой пары (В) подавляет действие генов первой пары, в результате чего синтез пигмента не происходит, и куры также становятся альбиносами. Его рецессивный аллель (в) падавляющего действия не оказывает.

Скрещиваются два организма гетерозиготные по двум парам аллелей.

Определить в потомстве соотношение кур с окрашенным оперением и альбиносов.

Ответ: 13 белых, 3 окрашенных.

№3. У овса цвет зёрен определяется двумя парами неаллельных несцепленных генов.
Один доминантный ген (А) определяет чёрный цвет, другой доминантный ген (В) – серый цвет. Ген чёрного цвета подавляет ген серого цвета.

Оба рецессивных аллеля определяют белый цвет зёрен.

При опылении дигетерозиготных организмов в потомстве оказались растения с чёрными, серыми и белыми зёрнами.

Определить генотипы родительских организмов и фенотипическое соотношение в потомстве.

Ответ: 12 чёрных, 3 серых, 1 белый.

Наследование генов, расположенных в половых хромосомах

№1. Ген нормальной свёртываемости крови (А) у человека наследуется по доминантному типу и сцеплен с Х-хромосомой. Рецессивная мутация этого гена (а) приводит к гемофилии – несвёртываемости крови.

У-хромосома аллельного гена не имеет.

Определить процентную вероятность рождения здоровых детей в молодой семье, если невеста имеет нормальную свёртываемость крови, хотя её родная сестра с признаками гемофилии. У жениха мать страдает этим заболеванием, а отец здоров.

Решение. 1) Определяем генотип невесты. По условию задачи сестра невесты имеет рецессивный генотип Х а Х а , значит обе сестры получают ген гемофилии (от своего отца). Поэтому здоровая невеста гетерозиготна.

2) Определяем генотип жениха. Мать жениха с признаками гемофилии Х а Х а , следовательно, по хромосомной теории пола, рецессивный ген она передаёт сыну Х а У.

Ответ: соотношение по фенотипу 1:1, 50% детей здоровы.

№2. Изучается одна пара аллельных генов в Х-хромосоме, регулирующая цветовое зрение у человека.

Нормальное цветовое зрение является доминантным признаком, а дальтонизм проявляется по рецессивному типу.

Проанализировать генотип материнского организма.

Известно, что у матери два сына, у одного из них больная жена и здоровый ребёнок. В семье второго – дочь с признаками дальтонизма и сын, цветовое зрение которого в норме.

Решение. 1) Определяем генотип первого сына. По условию задачи у него больная жена и здоровый ребёнок – это может быть только дочь Х А Х а . Рецессивный ген дочь получила от матери, а доминантный ген от отца, следовательно, генотип мужского организма доминантный (Х А У).

2) Определяем генотип второго сына. Его дочь больна Х а Х а , значит, один из рецессивных аллелей она получила от отца, поэтому генотип мужского организма рецессивный (Х а У — ).

3) Определяем генотип материнского организма по её сыновьям:

Ответ: генотип матери гетерозиготный Х А Х а .

№3. Альбинизм у человека определяется рецессивным геном (а), расположенным в аутосоме, а одна из форм диабета определяется рецессивным геном (в), сцепленным с половой Х-хромосомой.

Доминантные гены отвечают за пигментацию (А) и нормальный обмен веществ (В).

У-хромосома генов не содержит.

Супруги имеют тёмный цвет волос. Матери обоих страдали диабетом, а отцы – здоровы.

Родился один ребёнок больной по двум признакам.

Определить процентную вероятность рождения в данной семье здоровых и больных детей.

Решение. Применяя правило “чистоты гамет” определяем генотипы родителей по цвету волос – генотипы гетерозиготные Аа.

По хромосомной теории пола определили, что отец болен диабетом Х в У — , а мать здорова Х В Х в .

Составляем решётку Пеннета – по горизонтали выписывают гаметы отцовского организма, по вертикали гаметы материнского организма.

Ответ: шесть организмов из шестнадцати доминантны по двум признакам – вероятность рождения составляет 6/16 = 37,5%. Десять больных: 10/16 = 62,5%, из них двое больных по двум признакам: 2/16 = 12,5%.

№4. Два рецессивных гена, расположенных в различных участках Х-хромосомы, вызывают у человека такие заболевания как гемофилия и мышечная дистрофия. Их доминантные аллели контролируют нормальную свёртываемость крови и мышечный тонус.

У-хромосома аллельных генов не содержит.

У невесты мать страдает дистрофией, но по родословной имеет нормальную свёртываемость крови, а отец был болен гемофилией, но без каких либо дистрофических признаков.

У жениха проявляются оба заболевания.

Проанализировать потомство в данной семье.

Ответ: все дети имеют заболевание, 50% с гемофилией и 50% с дистрофией.

Наследование сцепленных генов. Явление кроссинговера.

№1. Ген роста у человека и ген, определяющий количество пальцев на конечностях, находятся в одной группе сцепления на расстоянии 8 морганид.

Нормальный рост и пять пальцев на кистях рук являются рецессивными признаками. Высокий рост и полидактилия (шестипалость) проявляются по аутосомно-доминантному типу.

Жена имеет нормальный рост и по пять пальцев на руке. Муж гетерозиготен по двум парам аллелей, причём ген высокого роста он унаследовал от отца, а ген шестипалости от матери.

Определить в потомстве процентное соотношение вероятных фенотипов.

№2. Два гена, регулирующих реакции обмена веществ в организме человека, сцеплены с Х-хромосомой и расположены друг от друга на расстоянии 32 морганид. У-хромосома аллельных генов не содержит.

Доминантные гены контролируют нормальный обмен веществ.

Воздействия различных мутагенных факторов изменяют последовательностъ нуклеотидов в данных участках Х-хромосомы, что приводит к отклонениям в синтезе веществ и наследственным заболеваниям по рецессивному типу.

От здоровых родителей рождается больной ребёнок, имеющий два мутантных гена в генотипе.

Какова процентная вероятность рождения следующего ребёнка с нарушением обмена веществ?

Решение. По условию задачи в данной семье больной ребёнок – это сын вХ а У т.к. от здорового отца дочери больными быть не могут.

Сын получил рецессивные гены от матери, следовательно, генотип матери гетерозиготный

Составляем схему скрещивания:

Ответ: вероятность рождения больных детей составляет 33%, из них 17% больных по двум заболеваниям обмена веществ, 8% по одному заболеванию и 8% по другому.

источник

Для того чтобы описывать генетические свойства популяции, вводится понятие генофонда: совокупности генов, встречающихся в данной популяции. Помимо генофонда важны также частота встречаемости гена или частота встречаемости аллеля.

Знание того, как реализуются законы наследования на уровне популяций, принципиально важно для понимания причин индивидуальной изменчивости. Все закономерности, выявляемые в ходе психогенетических исследований, относятся к конкретным популяциям. В других популяциях, с иным генофондом и другими частотами генов, могут получаться отличающиеся результаты.

Закон Харди-Вайнберга— основа математических построений генетики популяций и современной эволюционной теории.

Данная разработка содержит теоретический материал по теме и примеры решения задач на применение данного закона.

Популяционная генетика занимается генетической структурой популяций.

Понятие «популяция» относится к совокупности свободно скрещивающихся особей одного вида, длительно существующей на определенной территории (части ареала) и относительно обособленной от других совокупностей того же вида.

Важнейший признак популяции — это относительно свободное скрещивание. Если возникают какие-либо изоляционные барьеры, препятствующие свободному скрещиванию, то возникают новые популяции.

У человека, например, помимо территориальной изоляции, достаточно изолированные популяции могут возникать на основе социальных, этнических или религиозных барьеров. Поскольку между популяциями не происходит свободного обмена генами, то они могут существенно различаться по генетическим характеристикам. Для того чтобы описывать генетические свойства популяции, вводится понятие генофонда: совокупности генов, встречающихся в данной популяции. Помимо генофонда важны также частота встречаемости гена или частота встречаемости аллеля.

Знание того, как реализуются законы наследования на уровне популяций, принципиально важно для понимания причин индивидуальной изменчивости. Все закономерности, выявляемые в ходе психогенетических исследований, относятся к конкретным популяциям. В других популяциях, с иным генофондом и другими частотами генов, могут получаться отличающиеся результаты.

Закон Харди-Вайнберга— основа математических построений генетики популяций и современной эволюционной теории. Сформулирован независимо друг от друга математиком Г. Харди (Англия) и врачом В. Вайнбергом (Германия) в 1908 г. Этот закон утверждает, что частоты аллелей и генотипов в данной по­пуляции будут оставаться постоянными из поколения в поколение при выполнении следующих условий:

1) численность особей популяции достаточно велика (в идеале — бесконечно велика),

2) спаривание происходит случайным образом (т. е. осуществ­ляется панмиксия),

3) мутационный процесс отсутствует,

4) от­сутствует обмен генами с другими популяциями,

5) естественный отбор отсутствует, т. е. особи с разными генотипами одинаково плодовиты и жизнеспособны.

Иногда этот закон форму­лируют иначе: в идеальной популяции частоты аллелей и геноти­пов постоянны. (Поскольку описанные выше условия выполнения данного закона и есть свойства идеальной популяции.)

Математи­ческая модель закона отвечает формуле:

Она выводится на основе следующих рассуждений. В качестве примера возьмем простейший случай — распределение двух ал­лелей одного гена. Пусть два организма являются основателями новой популяции. Один из них является доминантной гомозиго­той (АА), а другой — рецессивной гомозиготой (аа). Естественно, что все их потомство в F1 будет единообразным и будет иметь генотип (Аа). Далее особи F1 будут скрещиваться между собой. Обозначим частоту встречаемости доминантного аллеля (А) буквой p, а рецессивного аллеля (а) — буквой q. Поскольку ген представлен всего двумя аллелями, то сумма их частот равна единице, т. е. р + q = 1. Рассмотрим все яйцеклетки в данной популяции. Доля яйцеклеток, несущих доминантный аллель (А), будет соответствовать частоте этого аллеля в популяции и, сле­довательно, будет составлять р. Доля яйцеклеток, несущих ре­цессивный аллель (а), будет соответствовать его частоте и со­ставлять q. Проведя аналогичные рассуждения для всех сперматозоидов популяции, придем к заключению о том, что до­ля сперматозоидов, несущих аллель (А), будет составлять р, а несущих рецессивный аллель (а) — q. Теперь составим решетку Пеннета, при этом при написании типов гамет будем учитывать не только геномы этих гамет, но и частоты несомых ими алле­лей. На пересечении строк и столбцов решетки мы получим генотипы потомков с коэффициентами, соответствующими часто­там встречаемости этих генотипов.

источник

Раздел кодификатора ЕГЭ: 3.5. … Решение генетических задач…

Для решения генетических задач вначале необходимо изучить или повторить конспекты по теме «Генетика»:

Задача 1. Рецессивные гены (а) и (с) определяют проявление таких заболеваний у человека, как глухота и альбинизм. Их доминантные аллели контролируют наследование нормального слуха (А) и синтез пигмента меланина (С). Гены не сцеплены. Родители имеют нормальный слух; мать — брюнетка, отец — альбинос. Родились три однояйцевых близнеца, больные по двум признакам. Какова вероятность того, что следующий ребёнок в этой семье будет иметь оба заболевания?

Поскольку близнецы родились с обоими заболеваниями (а заболевания рецессивны), то здоровая мать дигетерозиготна по данным заболеваниям (АаСс). Так как отец имеет нормальный слух, но дети больны, то по гену глухоты отец гетерозиготен (Аа), а также является альбиносом (сс). Составим решётку Пеннета:

Ребёнок глухой с альбинизмом у данной пары может родиться с вероятностью 1/8, то есть 12,5 %.

Задача 2. У человека гены А и В локализованы в аутосоме на расстоянии 8 М. Известно, что у отца генотип ab/ /ab, а у матери — Аb/ /аВ. Какова вероятность рождения ребёнка с генотипом матери?

Без кроссинговера генотип матери образует только гаметы АЬ и аВ. Поскольку расстояние между генами 8 М, то процент кроссинговера равен 8 %, соответственно, материнский генотип способен образовывать рекомбинантные гаметы АВ и ab с вероятностью 8 %. Так как отцовский организм гомозиготен, то независимо от кроссинговера он образует только один тип гамет ab.

Составим решётку Пеннета. Для «нормальных» нерекомбинантных гамет (100 % — 8 % = 92 %):

Для рекомбинантных гамет (8 %):

Таким образом, ребёнок, гетерозиготный по обоим генам, как мать, может родиться с вероятностью 4 %.

Задача 3. Один ребёнок здоровых родителей родился здоровым, а второй — имел тяжёлую наследственную болезнь и умер сразу после рождения. Какова вероятность того, что следующий ребёнок в этой семье будет здоровым? Рассматривается одна пара аутосомных генов.

Поскольку в данной семье родители и один из детей здоровы, а другой ребёнок болен, то согласно второму закону Менделя заболевание — рецессивный признак, а родители гетерозиготны по данному гену. У двух гетерозиготных родителей здоровые дети (доминантный признак) могут родиться с вероятностью три здоровых ребёнка из четырёх. Соответственно, 75 %.

Задача 4. Расстояние между генами А и В — 10 см, а между генами В и С — 5 см. Каково расстояние между генами А и С? Определите два верных ответа из пяти.

Поскольку не указано, как размещён ген С по отношению к гену В, то они могут располагаться следующим образом:

Ответ: 3 (15 см) и 5 (5 см).

Задача 5. Гемофилия (Н) обусловлена рецессивным геном, расположенным в Х-хромосоме, поэтому гетерозиготные по данному гену женщины обладают обычной свёртываемостью крови. С какой вероятностью родится мальчик, страдающий гемофилией, у гетерозиготной по указанному признаку женщины и нормального мужчины?

Решение:

F1: 1/4 Х Н Х Н — девочка с нормальной свёртываемостью крови

1/4 Х H Y — мальчик с нормальной свёртываемостью крови

1/4 X H X h — девочка с нормальной свёртываемостью крови (носитель заболевания)

1/4 или 25 % X h Y — мальчик, больной гемофилией

Задача 6. Проанализируйте таблицу. Заполните пустые ячейки, используя элементы, приведённые в списке.

Типы генетического определения пола

Группы организмов Женский Мужской
Некоторые отряды насекомых (мухи и др.) ___ (А) ___ (Б)
Некоторые отряды насекомых, млекопитающих, большинство рыб, растений ___ (В) ___ (Г)
Бабочки, птицы, пресмыкающиеся ___ (Д) ___ (Е)
Некоторые виды насекомых (моль и др.) ___ (Ж) ___ (З)
Читайте также:  Что такое глазной альбинизм

Пропущенные элементы: 1) XX; 2) XY; 3) ХО.

Ответ: А — 1;
Б — 3;
В — 1;
Г — 2;
Д — 2 или 3;
Е — 1;
Ж — 3;
З — 1.

Задача 7. У кур породы легторн окраска перьев обусловлена наличием доминантного аллеля гена С. Если геном кур содержит рецессивную гомозиготу (сс) — окраска не развивается. Ген I в доминантном состоянии подавляет развитие признака, контролируемого геном С. Определите вероятность рождения окрашенного цыплёнка от скрещивания кур с генотипом CCIi и ccIi.

Задача 8. Вам представлены два генеалогических дерева. Определите характер наследования признаков в указанных семьях.

Ответ: 1 – Д; 2 – Б.

Задача 9. У душистого горошка розовая окраска цветов проявляется при наличии двух доминантных генов А и В. Если в генотипе имеется только один доминантный ген, то окраска не развивается (белые цветки). Определите вероятность появления в F2 растений с розовой окраской от скрещивания растений с генотипами ААbb и ааВВ.

9 A_В_ (розовые); 3 ааВ_ (белые); 3 А_bb (белые); 1 aabb (белые)
Всего возможных комбинаций генотипов в F2 — 16 и это 100 %.
Растений с розовыми цветами — 9 генотипов, обозначим как х.
х = 9 • 100 / 16 = 56,25 %.

Ответ: 56,25 %.

Задача 10. Ген черной масти у крупнорогатого скота доминирует над геном красной масти. Какое потомство F1 получится от скрещивания чистопородного черного быка с красными коровами? Какое потомство F2 получится от скрещивания между собой гибридов?

А – ген черной масти, а – ген красной масти.

Красные коровы несут рецессивный признак, следовательно, они гомозиготны по рецессивному гену и их генотип – аа .

Бык несет доминантный признак черной масти и является чистопородным, т.е. гомозиготным. Следовательно, его генотип – АА .

Гомозиготные особи образуют один тип гамет, поэтому черный бык может продуцировать только гаметы, несущие доминантный ген А , а красные коровы несут только рецессивный ген а .

Они могут сочетаться только одним способом, в результате чего образуется единообразное поколение F1 с генотипом Аа .

Гетерозиготы с равной вероятностью формируют гаметы, содержащие гены А и а . Их слияние носит случайный характер, поэтому в F2 будут встречаться животные с генотипами АА (25%), Аа (50%) и аа (25%), то есть особи с доминантным признаком будут составлять примерно 75%.

  1. Прочитав текст задачи, запишите ее условие в виде таблицы. Помните, что в первой колонке указывается альтернативное проявление признака (при моногибридном скрещивании) или признаков -(при ди- и полигибридных скрещиваниях), причем сначала записывается доминантный признак, потом — рецессивный и так для каждой пары альтернативных признаков; во второй — обозначения генов; а в третьей — ВСЕ возможные генотипы особей с данным фенотипом.
  1. Определите тип задачи: прямая (если из условия известно, какими признаками обладают родители, и спрашивается, какими могут быть их дети) или обратная (если в условии говорится о фенотипе детей и требуется определить генотипы и (или) фенотипы родителей).
  2. Если задача прямая, запишите с помощью общепринятых символов схему скрещивания. Если задача обратная, под таблицей с условием запишите данные о генотипах и фенотипах потомков, применяя символы, обозначающие расщепление:

F1 : n (фенотип/ возможный генотип) : m (фенотип/ возможный генотип)

Ниже запишите схему скрещивания.

  1. Определите, какие генетические законы и закономерности применяются в данной задаче. Вспомните прямую и обратную формулировку закона, спроецируйте их на задачу, сделайте выводы.
  2. Гетерозиготы всегда образуют четное количество сортов гамет, равное 2n , где п — число «гетеро» пар аллельных генов (Аа, АаВВ, n = 1, 21 = 2 => два сорта гамет; AaBb, AabbDd, n = 2, 2 2 = 4 => 4 сорта гамет; AaBbDd, n = 3, 2 3 = 8 => 8 сортов гамет и т. д.). Гаметы образуются в соответствии с правилом чистоты гамет!
  3. При анализирующих скрещиваниях число образованных в поколении гибридов фенотипических классов указывает на число сортов гамет, образуемых гетерозиготной особью, при этом все фенотипические классы будут представлены в равных пропорциях (1:1; 1:1:1:1 и т. д.).

Это конспект для 10-11 классов по теме «Решение генетических задач». Выберите дальнейшее действие:

источник

Различные способы выражения Расчет частоты,

Выраженной частоты аллеля в долях единицы

Или генотипа в популяции

1. В исследуемой популяции 84 человека 84 : 420 = 0, 2

из 420 имели доминантный признак.

2. В одной из популяций встречаемость 15 : 100 = 0,15

людей с резус-положительной кровью

(рецессивный признак) составляет 15 %.

3. Встречаемость больных, страдающих 10 -4 = 1 : 10000 = 0,0001

фенилкетонурией, равна 10 -4 .

4. В европейских популяциях 0,02 : 1000 = 0,00002

составляет 0,02 на 1000 новорожденных.

5. Алкаптонурия встречается с частотой 1 : 100 000 = 0,00001

6. Изучаемый признак характеризуется 0,09 : 0,3 = 0,3

неполной пенетрантностью, равной

30%, и встречается в популяции с

Частота генотипа – доля особей в популяции, имеющих данный генотип, среди всех особей популяции.

Частота аллеля – доля конкретного аллеля среди всех имеющихся в популяции аллелей изучаемого гена.

♂ ♀ А (р) а (q)
А (р) 0,49 АА (р 2 ) 0,21 Аа (рq)
а (q) 0,21 Аа (рq) 0,09 аа (q 2 )

р – частота аллеля «А» в популяции

q – частота аллеля «а» в популяции

Закон Харди-Вайнберга:

р 2 + 2рq + q 2 = 1; р + q = 1.

Пример:Альбинизм общий наследуется как аутосомный рецессивный признак. Заболевание встречается с частотой 1 : 20 000. Вычислите частоту гетерозигот в популяции.

Таблица “Признак — ген”

Пара альтернативных Аллели Возможные генотипы

Признаков гена

Альбинизм а (q) аа (q 2 )

Отсутствие альбинизма А (р) А _(р 2 + 2рq): АА (р 2 ) или Аа (2рq)

Частота гомозигот по рецессивному признаку в популяции:

Частота рецессивного аллеля в популяции:

q = = 0,07

Частота доминантного аллеля в популяции:

Частота гетерозигот в популяции:

2рq = 2 * 0,07 * 0,93 = 0,1302 (13 %)

Ответ:Частота гетерозигот в популяции 13 %.

1. Одна из форм фруктозурии (ослабление усвоения фруктозы и повышенное ее содержание в мече) проявляется субклинически. Дефекты обмена снижаются при исключении фруктозы из пищи. Заболевание наследуется аутосомно-рецессивно и встречается с частотой 7:1000000 (В.П. Эфроимсон, 1968 г.) Определить частоту гетерозигот в популяции.

2. Врождённый вывих бедра наследуется доминантно, средняя пенетрантность гена 25%. Заболевание встречается с частотой 0,06% (В.П. Эфроимсон, 1968). Определите число гомозиготных особей по рецессивному гену.

3. В одной панмиктической популяции частота аллелей b равна 0,1, а в другой – 0,9. В какой популяции больше гетерозигот?

4. Болезнь Тей-Сакса, обусловленная аутосомным рецессивным геном, неизлечима; люди, страдающие этим заболеванием, умирают в детстве. В одной из больших популяций частота рождения больных детей составляет 1:5000. Сколько здоровых людей будет проживать в популяции численностью 400 000 человек?

5. Кистозный фиброз поджелудочной железы (муковисцидоз) поражает индивидуумов с рецессивным гомозиготным фенотипом и встречается среди населения с частотой 1 на 2000. Вычислите частоту гена кистозного фиброза в популяции численностью 1 000 000 человек.

6. В популяции встречаются три генотипа по гену цвета глаз в соотношении: 9/16АА, 6/16Аа и 1/16аа. Карий цвет глаз – это аутосомный доминантный признак с постоянной пенетрантностью. Находится ли данная популяция в состоянии генетического равновесия?

7. Аниридия наследуется как доминантный аутосомный признак и встречается с частотой 1:10000 (В.П. Эфроимсон). Определить генетическую структуру популяции.

8. Хорея Генгингтона наследуется как аутосомно-доминантный признак с пенетрантностью 82,5%. В популяции на 100 тысяч человек приходится 4 больных. Определите процент людей-носителей данного заболевания в популяции.

9. Популяционная частота дизостоза черепно-лицевого – 1:25 000. Этот признак наследуется аутосомно-доминантно с пенетрантностью 50%. Сколько людей в популяции будут носителями данного гена.

10. Подагра встречается у 2% людей и обусловлена аутосомным доминантным геном. У женщин ген подагры не проявляется, у мужчин пенетрантность его равна 20% (В.П. Эфроимсон, 1968). Определите генетическую структуру популяции.

11. Из ниже приведенных заболеваний укажите те, чью популяционную численность можно рассчитать с помощью закона Харди-Вайнберга: Синдром Патау, синдром Джейкоба, фенилкетонурия, полидактилия, серповидно-клеточная анемия, синдром кошачьего крика, гипертрихоз, дальтонизм.

12. Туберозный склероз (эпилойя) наследуется как аутосомный доминантный признак. По данным Пенроза (1972), данное заболевание встречается с частотой 1 : 600 000. Один из симптомов данного заболевания – факома глазного дна (опухоли сетчатки) – обнаруживается у 80% всех гомозигот и у 20% предположительно гетерозиготных, у которых нет других клинических симптомов. Определите частоту встречаемости доминантного гена (решение задачи по желанию студента).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9951 — | 7758 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

В пределах генофонда популяции доля генотипов, содержащих разные аллели одного гена; при соблюдении некоторых условий из поколения в поколение не изменяется. Эти условия описываются основным законом популяционной генетики, сформулированным в 1908 г. английским математиком Дж. Харди и немецким врачом-генетиком Г. Вайнбергом. «В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Хорошо известно, что этот закон применим лишь для идеальных популяций: достаточно высокая численность особей в популяции; популяция должна быть панмиксной, когда нет ограничения к свободному выбору полового партнера; практически должно отсутствовать мутирование изучаемого признака; отсутствует приток и отток генов и нет естественного отбора.

Закон Харди-Вайнберга формулируется следующим образом:

в идеальной популяции соотношение частот аллелей генов и генотипов из поколения в поколение является величиной постоянной и соответствует уравнению:

где p 2 — доля гомозигот по одному из аллелей; p — частота этого аллеля; q 2 — доля гомозигот по альтернативному аллелю; q — частота соответствующего аллеля; 2pq — доля гетерозигот.

Что значит “соотношение частот аллелей генов” и “соотношение генотипов” – величины постоянные? Чему равны эти величины?

Пусть частота встречаемости какого-либо гена в доминантном состоянии (А) равна p, а рецессивного аллеля (а) этого же гена равна q (можно и наоборот, а можно и вообще одной буквой, выразив одно обозначение из другого) и понимая, что сумма частот доминантного и рецессивного аллелей одного гена в популяции равна 1, мы получим первое уравнение:

Откуда берется само уравнение Харди-Вайнберга? Вы помните, что при моногибридном скрещивании гетерозиготных организмов с генотипами Аа х Аа по второму закону Менделя в потомстве мы будем наблюдать появление разных генотипов в соотношении 1АА : 2 Аа : 1аа.

Поскольку частота встречаемости доминантного аллельного гена А у нас обозначена буквой р, а рецессивного аллеля а буквой q, то сумма частот встречаемости самих генотипов организмов (АА, 2Аа и аа), имеющих эти же аллельны гены А и а, будет тоже равна 1, то:

2) p 2 AA + 2pqAa + q 2 aa = 1

В задачах по популяционной генетике, как правило, требуется:
а) найти частоты встречаемости каждого из аллельных генов по известному соотношению частот генотипов особей;

б) или наоборот, найти частоту встречаемости какого-либо из генотипов особей по известной частоте встречаемости доминантного или рецессивного аллеля изучаемого признака.

Так вот, подставляя известное значение частоты встречаемости какого-то из аллелей гена в первую формулу и найдя значение частоты встречаемости второго аллеля, мы всегда сможем по уравнению Харди-Вайнберга найти частоты встречаемости самих различных генотипов потомства.

Обычно некоторые действия (из-за их очевидности) решаются в уме. Но, чтобы было ясно то, что и так очевидно, надо хорошо понимать, что собой представляют буквенные обозначения в формуле Харди-Вайнберга.

Положения закона Харди-Вайнберга применимы и к множественным аллелям. Так, если аутосомный ген представлен тремя аллелями (А, а1 и а2), то формулы закона приобретают следующий вид:

р 2 АА+ q 2 а1а1 + r 2 а2а2 + 2рqАа1 + 2рrАа2 + 2qrа1а2 = 1.

«В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Допустим, что в генофонде популяции, удовлетворяющей описанным условиям, некий ген представлен аллелями А1 и А2, обнаруживаемыми с частотой р и q . Так как других аллелей в данном генофонде не встречается, то р +q = 1. При этом q = 1—р.

Соответственно особи данной популяции образуют р гамет с аллелем А 1 и q гамет с аллелем А2. Если скрещивания происходят случайным образом, то доля половых клеток, соединяющихся с гаметами А 1 , равна р, а доля половых клеток, соединяющихся с гаметами A 2, — q. Возникающее в результате описанного цикла размножения поколение F 1 образовано генотипами A l A 1, A 1 A 2, A 2 A 2, количество которых соотносится как (р + q) (р + q) = р 2 + 2 pq + q 2 (рис. 10.2). По достижении половой зрелости особи AlAi и АгА2 образуют по одному типу гамет — A 1 или A 2 — с частотой, пропорциональной числу организмов указанных генотипов (р и q). Особи A 1 A 2 образуют оба типа гамет с равной частотой 2 pq /2.

Рис. Закономерное распределение генотипов в ряду поколений в зависимости от частоты образования гамет разных типов (закон Харди—Вайнберга)

Таким образом, доля гамет A 1 в поколении F 1 составит р 2 + 2pq/2 = р 2 + р(1—р) = p, а доля гамет А2 будет равна q 2 + 2pq/2 = q 2 + + q ( l — q ) = q .

Так как частоты гамет с разными аллелями в поколении fi в сравнении с родительским поколением не изменены, поколение F 2 будет представлено организмами с генотипами A l A 1 , A 1 A 2 и А2А2 в том же соотношении р 2 + 2pq + q 2 . Благодаря этому очередной цикл размножения произойдет при наличии р гамет A 1 и q гамет А2. Аналогичные расчеты можно провести для локусов с любым числом аллелей. В основе сохранения частот аллелей лежат статистические закономерности случайных событий в больших выборках.

Уравнение Харди—Вайнберга в том виде, в котором оно рассмотрено выше, справедливо для аутосомных генов. Для генов, сцепленных с полом, равновесные частоты генотипов A l A 1 , A 1 A 2 и А2А2 совпадают с таковыми для аутосомных генов: р 2 + 2pq + q 2 . Для самцов (в случае гетерогаметного пола) в силу их гемизиготности возможны лишь два генотипа A 1 — или А2 —, которые воспроизводятся с частотой, равной частоте соответствующих аллелей у самок в предшествующем поколении: р и q. Из этого следует, что фенотипы, определяемые рецессивными аллелями сцепленных с хромосомой Х генов, у самцов встречаются чаще, чем у самок.

Так, при частоте аллеля гемофилии, равной 0,0001, это заболевание у мужчин данной популяции наблюдается в 10 000 раз чаще, чем у женщин (1 на 10 тыс. у первых и 1 на 100 млн. у вторых).

Еще одно следствие общего порядка заключается в том, что в случае неравенства частоты аллеля у самцов и самок разность между частотами в следующем поколении уменьшается вдвое, причем меняется знак этой разницы. Обычно требуется несколько поколений для того, чтобы возникло равновесное состояние частот у обоих полов. Указанное состояние для аутосомных генов достигается за одно поколение.

Закон Харди — Вайнберга описывает условия генетической стабильности популяции. Популяцию, генофонд которой не изменяется в ряду поколений, называют менделевской. Генетическая стабильность менделевских популяций ставит их вне процесса эволюции, так как в таких условиях приостанавливается действие естественного отбора. Выделение менделевских популяций имеет чисто теоретическое значение. В природе эти популяции не встречаются. В законе Харди — Вайнберга перечислены условия, закономерно изменяющие генофонды популяций. К указанному результату приводят, например, факторы, ограничивающие свободное скрещивание (панмиксию), такие, как конечная численность организмов в популяции, изоляционные барьеры, препятствующие случайному подбору брачных пар. Генетическая инертность преодолевается также благодаря мутациям, притоку в популяцию или оттоку из нее особей с определенными генотипами, отбору.

Читайте также:  Близорукость при альбинизме

Задача 1. В популяции человека количество индивидуумов с карим цветом глаз составляет 51%, а с голубым – 49%. Определите процент доминантных гомозигот в данной популяции.

Сложность решения подобных заданий в их кажущейся простоте. Раз так мало данных, то и решение должно быть как-будто очень короткое. Оказывается не очень.

По условию подобного рода заданий нам, как правило, дается информация об общем количестве фенотипов особей в популяции. Поскольку фенотипы особей в популяции с доминантными признаками могут быть представлены как гомозиготными по генотипу особями АА, так и гетерозиготными Аа, то для определения частот встречаемости каких-то конкретных генотипов особей в этой популяции, необходимо предварительно вычислить частоты встречаемости аллелей гена А и а по отдельности.

Как мы должны рассуждать при решении этой задачи?

Поскольку известно, что карий цвет глаз доминирует над голубым, обозначим аллель, отвечающий за проявление признака кареглазости А, а аллельный ему ген, ответственный за проявление голубых глаз, соответственно, а. Тогда кареглазыми в исследуемой популяции будут люди как с генотипом АА (доминантные гомозиготы, долю которых и надо найти по условию задачи), так и — Аа гетерозиготы), а голубоглазыми – только аа (рецессивные гомозиготы).

По условию задачи нам известно, что количество людей с генотипами АА и Аа составляет 51%, а количество людей с генотипом аа — 49%. Как, исходя из этих статистических данных (большая выборка должна быть, репрезентативная), можно вычислить процент кареглазых людей только с генотипом АА?

Для этого вычислим частоты встречаемости каждого из аллельных генов А и а в данной популяции людей. Закон Харди-Вайнберга, применяемый для больших свободно скрещивающихся популяций, как раз и позволит нам сделать это.

Обозначив частоту встречаемости аллеля А в данной популяции буквой q, имеем частоту встречаемости аллельного ему гена а = 1 – q. (Можно было бы обозначить частоту встречаемости аллельного гена а отдельной буквой, как в тексте выше – это кому как удобнее). Тогда сама формула Харди-Вайнберга для расчета частот генотипов при моногибридном скрещивании при полном доминировании одного аллельного гена над другим будет выглядеть вот так:

q 2 AA+ 2q(1 – q)Aa + (1 – q) 2 aa = 1.

Ну, а теперь уже все просто, вы наверняка все догадались, что в этом уравнении нам известно, а что следует найти?

(1 – q) 2 = 0,49 – это частота встречаемости людей с голубыми глазами.

Находим значение q: 1 – q = корень квадратный из 0,49 = 0,7; q = 1 – 0,7 = 0,3, тогда q2 = 0,09.
Это значит, что частота кареглазых гомозиготных особей АА в данной популяции будет составлять 0,09 или доля их будет равна 9%.

Задача 2. У клевера лугового поздняя спелость доминирует над скороспелостью и наследуется моногено. При апробации установлено, что 4% растений относятся к раннеспелому типу клевера, какую часть от позднеспелых растений составляют гетерозиготы?

В данном контексте апробация означает оценку чистоты сорта. А что, разве сортом не является чистая линия как сорта гороха у Менделя, например. Теоретически “да”, но на практике (поля то большие – это не опытные делянки гениального Менделя) в каждом производственном сорте могут находиться в каком-то количестве и “мусорные” аллели генов.

В данном случае с позднеспелым сортом клевера, если бы сорт был чистым, присутствовали бы только растения с генотипом АА. Но сорт оказался на момент проверки (апробации) не очень чистым, так как 4% особей составляли раннеспелые растения с генотипом аа. Значит в этот сорт “затесались” аллели а.

Так вот, раз они “затесались”, то в данном сорте должны присутствовать и особи, хотя по фенотипу и позднеспелые, но гетерозиготные с генотипом Аа — их количество нам и надо определить?

По условию задачи 4% особей с генотипом аа составят 0,04 часть от всего сорта. Фактически это q 2 , значит частота встречаемости рецессивного аллеля а равна q = 0,2. Тогда частота встречаемости доминантного аллеля А равна p = 1 – 0,2 = 0,8.

Отсюда количество позднеспелых гомозигот p2 = 0,64 или 64%. Тогда количество гетерозигот Аа будет составлять 100% – 4% – 64% = 32%. Поскольку всего позднеспелых растений 96%, то доля гетерозигот среди них составит: 32 х 100 : 96 = 33,3%.

При обследовании популяции каракульских овец было выявлено 729 длинноухих особей (АА), 111 короткоухих (Аа) и 4 безухих (аа). Вычислите наблюдаемые частоты фенотипов, частоты аллелей, ожидаемые частоты генотипов по формуле Харди-Вайнберга.

Это задача по неполному доминированию, поэтому, распределение частот генотипов и фенотипов совпадают и их можно было бы определить, исходя из имеющихся данных. Для этого надо просто найти сумму всех особей популяции (она равна 844), найти долю длинноухих, короткоухих и безухих сначала в процентах (86.37, 13.15 и 0.47, соответственно) и в долях частот (0.8637, 0.1315 и 0.00474).

Но в задании сказано применить для расчетов генотипов и фенотипов формулу Харди-Вайнберга и, к тому же, рассчитать частоты аллелей генов А и а. Так вот для расчета самих частот аллелей генов без формулы Харди-Вайнберга не обойтись.

Обратите внимание, что в этой задаче, в отличие от предыдущей, для обозначения частот аллельных генов, мы будем пользоваться приемом обозначений не как в первой задаче, а как разбиралось выше в тексте. Понятно, что результат от этого не изменится, но вы будете в праве в будущем использовать любой из этих способов обозначений, какой вам кажется более удобным для понимания и проведения самих расчетов.

Обозначим частоту встречаемости аллеля А во всех гаметах популяции овец буквой р, а частоту встречаемости аллеля а — буквой q. Помним, что сумма частот аллельных генов p + q = 1.

Так как по формуле Харди-Вайнберга p 2 AA + 2pqAa + q 2 aa = 1 имеем, что частота встречаемости безухих q2 равна 0.00474, то извлекая квадратный корень из числа 0.00474 мы находим частоту встречаемости рецессивного аллеля а. Она равна 0.06884.

Отсюда мы можем найти частоту встречаемости и доминантного аллеля А. Она равна 1 – 0.06884 = 0.93116.

Теперь по формуле можем вычислить снова частоты встречаемости длинноухих (АА), безухих (аа) и короткоухих (Аа) особей. Длинноухих с генотипом АА будет р 2 = 0.931162 = 0.86706, безухих с генотипом аа будет q 2 = 0.00474 и короткоухих с генотипом Аа будет 2pq = 0,12820. (Вновь полученные числа, рассчитанные по формуле, почти совпадают с вычисленными изначально, что говорит о справедливости закона Харди-Вайнберга).

Задача 4. Почему доля альбиносов в популяциях так мала

В выборке, состоящей из 84 000 растений ржи, 210 растений оказались альбиносами, т.к. у них рецессивные гены находятся в гомозиготном состоянии. Определите частоты аллелей А и а, а также частоту гетерозиготных растений.

Обозначим частоту встречаемости доминантного аллельного гена А буквой p, а рецессивного а – буквой q. Тогда, что нам может дать формула Харди-Вайнберга p 2 AA + 2pqAa + q 2 aa = 1 для применения её к этой задаче?

Поскольку общая численность всех особей данной популяции ржи нам известна 84000 растений, а в частях это и есть 1, то доля гомозиготных альбиносных особей с генотипом аа равная q2, которых всего 210 штук, составит q2 = 210 : 84000 = 0,0025, тогда q = 0,05; p = 1 – q = 0,95 и тогда 2pq = 0,095.

Ответ: частота аллеля а – 0,05; частота аллеля А – 0,95; частота гетерозиготных растений с генотипом Аа составит 0,095.

Задача 5. Выращивали кроликов шиншилл, а получили брак в виде альбиносиков

У кроликов окраска волосяного покрова “шиншилла” (ген Cch) доминирует над альбинизмом (ген Ca). Гетерозиготы CchCa имеют светло-серую окраску. На кролиководческой ферме среди молодняка кроликов шиншилл появились альбиносы. Из 5400 крольчат 17 оказались альбиносами. Пользуясь формулой Харди-Вайнберга, определите, сколько было получено гомозиготных крольчат с окраской шиншилла.

А как Вы думаете, полученная выборка в популяции кроликов в количестве 5400 экземпляров, может позволить нам использовать формулу Харди-Вайнберга? Да выборка значительная, популяция изолированная (кролиководческая ферма) и действительно можно применить в расчетах формулу Харди-Вайнберга.Чтобы правильно её использовать, надо четко представлять что нам дано, а что требуется найти.

Лишь для удобства оформления, обозначим генотип шиншилл АА (количество их нам и надо будет определить), генотип альбиносиков аа, тогда генотип гетерозиготных серячков будет обозначаться Аа.

Если “сложить” всех кроликов с разными генотипами в изучаемой популяции: АА + Аа + аа, то это и будет в сумме 5400 штук особей.
Да еще нам известно, что кроликов с генотипом аа было 17 штук. Как же нам теперь, не зная сколько было гетерозиготных серых кроликов с генотипом Аа, определить сколько в этой популяции шиншилл с генотипом АА?

Как мы можем видеть эта задача является почти “копией” первой, только там нам даны были результаты подсчетов в популяции людей кареглазых и голубоглазых индивидов в %, а здесь фактически нам известна сама численность альбиносов кроликов 17 штук и всех гомозиготных шиншилл и гетерозиготных серячков в сумме: 5400 – 17 = 5383 штук.

Примем 5400 штук всех кроликов за 100%, тогда 5383 кролика (сумма генотипов АА и Аа) составит 99,685% или в частях это будет 0,99685.

q 2 + 2q(1 – q) = 0,99685 – это частота встречаемости всех шиншилл и гомозиготных (АА), и гетерозиготных (Аа).

Тогда из уравнения Харди-Вайнберга: q2 AA+ 2q(1 – q)Aa + (1 – q)2aa = 1 , находим

(1 – q) 2 = 1 – 0,99685 = 0,00315 — это частота встречаемости альбиносных кроликов с генотипом аа. Находим чему равна величина 1 – q. Это корень квадратный из 0,00315 = 0,056. А q тогда равняется 0,944.

q 2 равняется 0,891, а это и есть доля гомозиготных шиншил с генотипом АА. Так как эта величина в % составит 89,1% от 5400 особей, то количество гомозиготных шиншилл будет 4811 шт.

Задача 6. Определение частоты встречаемости гетерозиготных особей по известной частоте встречаемости рецессивных гомозигот

Одна из форм глюкозурии наследуется как аутосомно-рецессивный признак и встречается с частотой 7:1000000. Определить частоту встречаемости гетерозигот в популяции.

Обозначим аллельный ген, отвечающий за проявление глюкозурии а, так как сказано, что это заболевание наследуется как рецессивный признак. Тогда аллельный ему доминантный ген, отвечающий за отсутствие болезни обозначим А.

Здоровые особи в популяции людей имеют генотипы АА и Аа; больные особи имеют генотип только аа.

Обозначим частоту встречаемости рецессивного аллеля а буквой q, а доминантного аллеля А – буквой р.

Поскольку нам известно, что частота встречаемости больных людей с генотипом аа (а это значит q 2 ) равна 0,000007, то q = 0,00264575

Так как p + q = 1, то р = 1 — q = 0,9973543, и p2 = 0,9947155

Теперь подставив значения р и q в формулу:

найдем частоту встречаемости гетерозиготных особей 2pq в популяции людей:

2pq = 1 — p 2 — q 2 = 1 – 0,9947155 – 0,000007 = 0,0052775.

Задача 7. Как и предыдущая задача, но про альбинизм

Альбинизм общий (молочно-белая окраска кожи, отсутствие меланина в коже, волосяных луковицах и эпителии сетчатки) наследуется как рецессивный аутосомный признак. Заболевание встречается с частотой 1 : 20 000 (К. Штерн, 1965). Определите процент гетерозиготных носителей гена.

Так как этот признак рецессивный, то больные организмы будут иметь генотип аа — это их частота равна 1 : 20 000 или 0,00005.

Частота аллеля а составит корень квадратный из этого числа, то есть 0,0071. Частота аллеля А составит 1 — 0,0071 = 0,9929, а частота здоровых гомозигот АА будет 0,9859.

Частота всех гетерозигот 2Аа = 1 — (АА + аа) = 0,014 или 1,4%.

Задача 8. Кажется, как все просто, когда знаешь как решать

Популяция европейцев по системе групп крови резус содержит 85% резус положительных индивидуумов. Определите насыщенность популяции рецессивным аллелем.

Нам известно, что аллельный ген, отвечающий за проявление резус положительной крови является доминантным R (обозначим частоту его встречаемости буквой p), а резус отрицательный – рецессивным r (обозначим частоту встречаемости его буквой q).

Поскольку в задаче сказано, что на долю p 2 RR + 2pqRr приходится 85% людей, значит на долю резус-отрицательных фенотипов q 2 rr будет приходиться 15% или частота встречаемости их составит 0,15 от всех людей европейской популяции.

Тогда частота встречаемости аллеля r или ”насыщенность популяции рецессивным аллелем” (обозначенная буквой q) составит корень квадратный из 0,15 = 0,39 или 39%.

Задача 9. Главное знать что такое пенетрантность

Врожденный вывих бедра наследуется доминантно. Средняя пенетрантность составляет 25%. Заболевание встречаются с частотой 6:10000. Определите число гомозиготных особей в популяции по рецессивному признаку.

Пенетрантность — это количественный показатель фенотипической изменчивости проявления гена.

Пенетрантность измеряется в процентном отношении числа особей, у которых данный ген проявился в фенотипе к общему числу особей, в генотипе которых этот ген присутствует в необходимом для его проявления состоянии (гомозиготном — в случае рецессивных генов или гетерозиготном — в случае доминантных генов). Проявление гена у 100% особей с соответствующим генотипом называется полной пенетрантностью, а в остальных случаях — неполной пенетрантностью.

За изучаемый признак отвечает доминантный аллель, обозначим его А. Значит организмы, имеющие данное заболевание имеют генотипы АА и Аа.

Известно, что фенотипически вывих бедра выявляется у 6 организмов из всей популяции (10000 обследованных), но это лишь одна четвертая часть из всех людей, реально имеющих генотипы АА и Аа (так как сказано, что пенетрантность составляет 25%).

Значит на самом деле людей с генотипами АА и Аа в 4 раза больше, то есть 24 из 10000 или 0,0024 часть. Тогда людей с генотипом аа будет 1 – 0,0024 = 0,9976 часть или 9976 человек из 10000.

Задача 10. Если болеют только мужчины

Подагра встречается у 2% людей и обусловлена аутосомным доминантным геном. У женщин ген подагры не проявляется, у мужчин пенетрантность его равна 20% (В.П. Эфроимсон, 1968). Определите генетическую структуру популяции по анализируемому признаку, исходя из этих данных.

Так как подагра выявляется у 2% мужчин, то есть у 2 человек из 100 с пенетрантностью 20%, то реально носителями генов подагры является в 5 раз больше мужчин, то есть 10 человек из 100.

Но, так как мужчины составляют лишь пол популяции, то всего людей с генотипами АА + 2Аа в популяции будет 5 человек из 100, а, значит, 95 из 100 будут с генотипом аа.

Если частота встречаемости организмов с генотипами аа составляет 0,95, то частота встречаемости рецессивного аллеля а в этой популяции равна корню квадратному из числа 0,95 = 0,975. Тогда частота встречаемости доминантного аллеля ”А” в этой популяции равна 1 – 0,975 = 0,005.

Задача 11. Как мало людей устойчивых к ВИЧ инфекции

Устойчивость к ВИЧ-инфекции связана с наличием в генотипе некоторых рецессивных генов, например, ССR и SRF. Частота рецессивного аллеля ССR-5 в русской популяции составляет 0,25%, а аллеля SRF – 0,05%. В казахской популяции частота этих аллелей соответственно – 0,12% и 0,1%. Рассчитайте частоты организмов, имеющих повышенную устойчивость к ВИЧ-инфекции, в каждой из популяций.

Понятно, что повышенной устойчивостью к ВИЧ-инфекции будут обладать лишь гомозиготные организмы с генотипами аа. Организмы же с генотипами АА (гомозиготы) или Аа (гетерозиготы) не устойчивы к ВИЧ инфекции.

В русской популяции устойчивых организмов по аллельному гену ССR будет О,25% в квадрате = 0,0625%, а по аллельному гену SRF 0,05% в квадрате = 0,0025%.

В казахской популяции устойчивых организмов по аллельному гену ССR будет О,12% в квадрате = 0,0144%, а по аллельному гену SRF 0,1% в квадрате = 0,01%.

источник